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THE USE OF THE Q R  FACTORIZATION IN THE 

PARTIAL REALIZATION PROBLEM 

M.H. VERHAEGEN’ 

Abstract. The use of the QR factorization of the Hankel matrix in solving the partial 

realization problem is analyzed in this paper. 

Straightforward use of the QR factorization results in a new realization scheme that 

possess all of the computational advantages of Rissanen’s realization scheme. These latter 

properties are computational efficiency, recursiveness, use of limited computer memory, and 

the realization of a system triplet having a condensed structure. Moreover, this new scheme 

is robust when the order of the system corresponds to the rank of the Hankel matrix. 

When this latter condition is violated, an “approximate” realization could be de- 

termined via the QR factorization. In this second scheme, the given Hankel matrix is 

approximated by a low-rank non-Hankel matrix. Furthermore, it is demonstrated that 

column pivoting might be incorporated in this second scheme. 

The results presented in this paper are derived for a single-input/single-output sys- 

tem, but this does seem not to be a restriction. 

Keywords: Partial realization, QR factorization, Hankel matrix, Markov parame- 

ters 
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1. Introduction. The so-called Hankel approach [I] to  solve the partial 

realization problem [2] is studied in this paper. The cornerstone of this approach consists of 

the following two properties of the Hankel matrix, constructed from the Markov parameters: 

(1) the so-called shift invariance property and (2) the correspondence of the “numerical” 

rank of the Hankel matrix with the order of the system. Basically from these two properties 

“any” factorization of the Hankel matrix allows to solve the partial realization problem. 

This observation was first made by J .  Rissanen [3] in 1971. The algorithm described 

in [3] possesses a number of appealing properties: it is recursive and, computationally as 

well as storage related, very eficient.  However, the original presented scheme was not 

numerically stable. This was observed by L.S. De Jong [4], who in the same paper proposed 

algorithmic modifications to make the scheme numerically stable. 

The remaining drawback of this computational scheme was that it only used a very 

small amount of the available Markov parameters. Hence, making it only applicable when 

the Markov parameters are infinite-accurate. For the latter circumstances, which of course 

are very unrealistic, Rissanen’s realization scheme will be indicated in this paper as an 

elegant solution, summarizing the above mentioned algorithmic properties. Additionally, 

this realization scheme directly resulted in a state space description in a canonical form [3], 

[4], what will be indicated as an attractive property of the realization scheme. 

To make the Hankel approach applicable for practical realization problems, S.Y. 

Kung proposed to use the singular value decomposition (SVD) to factorize the Hankel 

matrix [l]. This allowed first to reliably determine the rank of the Hankel matrix and 

second to consider all available Markov parameters. Although the SVD might lead to  a 

numerical robust solution of the partial realization problem, it is still, for large systems 

and/or marginally stable systems, very storage and computational inefficient. Also, it does 

not result in a special canonical form and therefore certainly does not possess the elegantness 

and attractiveness of Rissanen’s numerical stable scheme. 

An inherent drawback in the Hankel approach is that even (relatively) small errors 

on the Markov parameters cause the second basic property to  be violated. This is due to the 

repetition of the individual Markov parameters and hence, so do their corresponding errors. 

An illustration of this phenomena will be given in this paper. Therefore, only factorizing 
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the Hankel matrix to solve the partial realization problem is not sufficient, no matter which 

factorization technique is used. This drawback has stimulated additional research which 

has been indicated as reduced-order modelling. Here one focuses on “approximating” the 

given Hankel matrix by a low-rank Hankel matrix 151, [6], and [7]. For certain practical 

applications [8] the latter constraint might be relaxed to  approximating the given Hankel 

matrix by a low-rank non-Hankel matrix. Also here the key tool used in solving this type 

of realization problems is the SVD. 

The incentive of this paper is to investigate the usefulness of the QR factorization of 

the Hankel matrix in solving partial realization problems. Two types of realization problems 

are investigated: (1) when the two fundamental properties of the Hankel matrix, mentioned 

above, hold, and (2) when the given Hankel matrix is approximated by a low-rank non- 

Hankel matrix. 

The organization of this  paper is as follows. After (re)stating the partial realization 

problem in section 2, the QR factorization is first analyzed for the type of partial realization 

problem, where the two basic properties are not violated. In this  case, the Markov param- 

eters are indicated to  be “accurately” given. Section 4 then discusses the use of the QR 

factorization in solving the realization problem from a low-rank non-Hankel approximation 

of the given Hankel matrix. This is indicated as “approximate” reduced-order modelling. 

The presented two realization schemes in sections 3 and 4 are then evaluated experimentally 

via a number of numerical examples in section 5 .  Finally, section 6 present the concluding 

remarks. 

The discussion throughout this paper is restricted to the single-input/single-output 

(SISO) case. But the results rather straightforwardly extend to the multi-input/multi- 

output (MIMO) . 

2. The partial realization problem. In this section we outline 

the partial realization problem and indicate the two fundamental properties of the Hankel 

matrix, which form the cornerstone in solving this problem. This was also indicated in [l]. 

Let hl , hz, * - - be the impuise response of a linear iinie-iiiviiiiant ~ysteix: 
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(2) 
T 

y k = C  z k  

where Xk E R”. Generally, the terms hi are called the Markov parameters. Given the system 

description (1-2), they could be stated as follows: 

(3) 
T i - 1  h ; = c  A b 

Hq(k, l )  = 

The so-called partial realization problem is one of recovering the system triplet { A ,  b, c T }  

from the finite sequence { h i }  for i = 1,2 ,  - .- M + N - 1. Here the integers M ,  N have to 

be larger than n,  however since n is not known a priori they are generally (assumed to be) 

taken much larger than n. 

... h,+l 

... 

... 

The Hankel matrix H q ( k , t )  that is used to  solve this problem is constructed from 

(4) 

Property 2.1: The rank of the Hankel matrix H l ( M , N ) ,  taken M and N “sufficiently 

large” as indicated above, is the order of the state space system given in (1-2). 

This property can easily be understood by using the Cayley-Hamilton theorem [2] and 

factorizing H I ( M ,  N) as: 

H l ( W  N )  = 

CT 

cTA 

,TAM-’ 

( 5 )  

where 0 E R M x n  and C E R n x N .  

Property 2.2: Using a similar factorization for the Hankel matrix H z ( A 4 , N )  the shift- 

invariance property of this Hankel matrix is: 
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Remark 2.1: From (5-6) we directly observe that any factorization of the Hankel matrix 

as given in (S), allows to  determine a state space realization. The advantage of using the 

SVD is twofold: first, the calculation of the system state matrix A, via (6), can reliably and 

easily be done once the SVD of the Hankel matrix is available and secondly, the order of 

the system n is also reliably revealed by a SVD. 

However even for (relatively) small errors on the Markov parameters, the information 

about the order of the system, which is crucial in the solution of the partial realization 

problem, cannot be retrieved from the rank of the Hankel matrix. For these circumstances, 

which will be defined precisely in the sequel, properties (5-6) are no longer sufficient to solve 

the partial realization problem. Therefore, additional conditions are required [4],  [SI. 

In the next section we start treating the realization problem where both fundamental 

properties hold. 

3. Accurate Markov parameters. 

3.1. The order of the system given. Let us first assume in this section that 

the Markov parameters are exactly known and that the order of the system (1-2) n is also 

given. Then, consider the QR factorization of the Hankel matrix H l ( M ,  n + 1): 

Here M 2 n and Q1 E R M x n  with QTQl = I,. Furthermore let us introduce the following 

not a t  ion : 

- Q ,  E R ( M - ' ) x "  - denotes Q1 without its last row 

Q1 E R ( M - ' ) x "  - denotes Q1 without its first row 

R E RnX("+')  - is an upper trapezoidal matrix given as [r l  . - -  r,+l]  

The fact that R is upper trapezoidal and of rank n will be shown later on in corollary 3.3. 

Using the above notation, the solution to  the partial realization problem becomes: 

(8) 
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and A, can be computed from either: 

or, 

A, [ r l .  * * rn] = [r2 * - rn+l] (11) 

The solution, given by equations ( 8 , 9  and 10 or 11) is completely similar with the one base 

on the SVD [l]. However, now the algorithmic complezity is less. For example, when using 

Eq. (10) to  compute A,, Q1 only has to be accumulated and this does not require iteration 

as in the SVD to compute the left singular vectors. 

In the decomposition (7) [rl  - - - r,] can be considered as the controllability matriz of 

the realizing pair { A c ,  b c } .  This then should imply that this pair is in controller-Hessenberg 

form. This assertion is proved in the following theorem. Let us first define the controller- 

Hessenberg form [9]. 

Definition 3.1: When the compound matrix (B I A) of the system triplet { A , B , C }  is 

upper trapezoidal, the state space description {A, B ,  C} is in controller-Hessenberg form. 

Theorem 3.1: The system triplet given by Eqs. (8, 9 and 10 or l l ) ,  obtained via  a QR 

factorization of the Hankel matrix given in (7) is in controller-Hessenberg form. 

Proof: From definition 3.1 for SISO, the controller-Hessenberg form, requires A, to be in 

Hessenberg form. This can directly be concluded form (1 1) since [r2 * * - r,+l]  is Hessenberg 

and [ r l .  - - rn] is upper triangular. 

This in combination with the structure of the input-vector b, given in (9) defines the 

controller-Hessenberg form. 

From this theorem, we can now derive a constructive algorithm to solve the partial 

realization problem with the order of the system given without ezplicitly accumulating the 

used orthogonal transformations in the QR factorization of the Hankel matrix. 

Algorithm 3.1: 

1. Construction of A,, given as (a1 -..a,] from (11): 

a1 = r 2 r ~ :  
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for i = 2:n 

end 

2.  Construction of c: from: 

3. Construction of b, given by (9). 

Corollary 3.1: Using the RQ factorization of the Hankel matrix H l ( n  + 1, M) for A4 2 n, 

results in a similar way into the obseruer-Hessenberg form, defined in [9]. 

Remark 3.1: Since Eq. (13) can straightforwardly be executed recursively, algorithm 3.1 

is a recursive scheme to realize a system triplet {A,, B,, CT} once the Hankel matrix has 

been triangularized. And the latter operation can also be done recursively. 

Remark 3.2: In [3], the observer-Hessenberg form was also derived without explicit notice. 

However, the developed implementation was numerically unstable [4] and furthermore the 

realization was obtained only based on a very restricted number of Markov parameters. 

This latter drawback may even for “very small” errors on the Markov parameters, result in 

‘‘large errors” on the realization. This is indicated explicitly in the experimental evaluation 

study in section 5.1. These two restrictions do not apply to  algorithm 3.1. 

Remark 3.3: Algorithm 3.1 also applies to the MIMO case. For this case, we recognize two 

situations. First, the dimension of the input is a multiplicity of the state dimensions. Then, 

algorithm 1 straightforwardly holds, except now that the scalars r,; and vectors a,  in (12) 

are respectively square and rectangular matrices. Secondly, when the above multiplicity 

does not hold, the algorithm remains similar, except for the computation of the last row of 

A,. This requires the use of pseudo-inverses [lo]. 

3.2. Detecting the order of the system. Generally, the order n of the state 

space model is not a priori known. Based on property 2.1 it can however be retrieved from 
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the Hankel matrix. Particularly, the QR decomposition of this matrix directly displays the 

order of the system. In order t o  show this, let us first state the following theorem. 

Theorem 3.2: When the state space system (1-2) is of order n ,  then the n+ 1, n + 2 , .  . . , N 

columns of HI(A4, N) with N > n are linearly dependent on the first n-columns. 

Proof: Let the characteristic polynomial of the considered nth order system (1-2) be given 

as : 

O ( Z )  = zn + d1zn-l + * * * + dn-12 + dn (14) 

Then according to the Cayley-Hamilton theorem [2], we can write the ( n  + l)th column of 

H I ( M ,  N) as: 

where _d = (&&-I 
of H1(M, N). The (n -t 2)th column of Hl(M,N) can then be written as: 

.dl)T # 0. This completes the proof for the ( n  + l)th column vector 

0 

dn 

dn- 1 

d2 

with d' # 0. 

In a similar way the n + 3, - - , N columns can be expressed as a linear combination 

of the first n columns of H1(M, N), what completes the proof. 

Corollary 3.2: Based on property 2.1 and theorem 3.2,  the first n columns of Hi(M,N) 
are linearly independent. 

Corollary 3.3: When the Markov parameters are exactly given, the QR factorization of 

H1 (M, N) becomes: 
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with Q E R M x N .  

Hence, a QR factorization wz’thout column pivoting of a Hankel matrix of sufficiently large 

dimensions allows us to directly read-ofthe order of the system. 

Generally, the conditions on the Markov parameters as imposed in corollary 3.3 are 

not met in practice. Therefore, we are interested for the size of the errors on the Markov 

parameters for which Corollary 3.3 holds. This is investigated in more detail in the next 

section. 

3.3. Perturbation analysis. Let us assume that the Markov parameters h,, 

defined in (3),  are perturbed by a data acquisition error e;, which satisfies: 

Hence, the Hankel matrix is now given as H1(M,  N) + E, where the perturbation matrix E 

is a Hankel matrix itself. In this section we additionally assume that these perturbations 

are acute. This latter notion is taken from [ l l ]  and is defined as follows. 

Definition 3.2: The matrix (A + E) is an acute perturbation of A if and only if: 

rank(A)  = rank(A + E )  (19) 

This condition implies that llAtll2llEll2 < 1 [lo], where At denotes the pseudo-inverse of A 

1111 and 11(*)112 = suP(1,1(2 = 1 11(.)412. 

Under the presence of the perturbations defined above, the QR factorization given 

in (17) becomes: 

This decomposition clarifies that theorem 3.2 no longer holds “exactly”. For this case it 

is however more natural t o  refer to the linear dependency in least squares sense. Let us 

therefore define the following least squares problem associated to  the decomposition (20). 

Here we focus on the way the (n + l)th column of ( H l ( M ,  N) + E) is lying in the space 

spanned by its first n columns. This information is incorporated in the residual of (21). 
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Therefore, the task now is to examine the influence of the perturbations {E1,&} on this 

residual. The actual influence is of course very difficult t o  calculate. However based on [ 111, 

we can formulate an upperbound for the perturbation on this residual due to  the errors 

{El E2). This can be retrieved from the following lemma, taken from [ 111. 

Lemma 3.1: Let the residual of the following least squares problem: 

be denoted by r and the actual residual of the unperturbed least squares problem min,IIAz- 

b)l12 be denoted by r, then an upperbound for the error on r is: 

The upperbound in (22) can for the errors under consideration be taken as: ’ 

Assuming now that the original system was of order n,  the application of lemma 3.1 yields 

the following upperbound for the residual r22 of (21): 

Therefore, by calculating this upperbound for different values of n, we just have to  inspect 

the magnitude of the diagonal elements of the R-factor in (20), relative to these bounds, in 

order to  detect the order of the system. This can be incorporated during the calculation of 

the QR factorization of the Hankel matrix, as is demonstrated by algorithm 3.2. 

Remark 3.4: The diagonal elements r,, of the R-factor in (20) can be expressed into the 

following product: 

bc(l).ac(2,1)...a,(i,i - 1) 

what exactly corresponds to the controllability measure, defined for SISO in [12]. In this 

perspective, a small r;i indicates the inclusion of a “weakly” controllable mode in the real- 

ization. The performed error analysis allows to precisely define the notion “weakly” here. 
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Algorithm 3.2: 

H; = H l ( M , N )  

H Y = O  
f o r i =  1 : N 

(where Z, denotes the identity matrix of order i (with 10 = { }) 

Hf E RiX i  

1 Hi E R(kf- : )X(N- i )  

(where H i ( : ,  1)  denotes the first column of H i )  

then go to  OUT: 

end 

OUT: n = i 

Define the first (i + 1) columns of [ H i  I *] in (25) as [rl - - - r i J r ; + l ]  which is then 

used as an input for algorithm 3.1. to  compute the triplet {A, ,b , ,cT} 

Remark 3.4: The quantity II(H;)tl[2 in (26) can be computed by the inverse iteration 

method [13]. The iterations involved here are very efficient since H i  is upper triangular. 

Remark 3.5: The calculation of ~ ~ H ~ ( : , l ) ~ ~ ~  in (26), each step of the do-loop in algorithm 

3.2, can be done very efficiently and recursively. This is because each two adjacent columns 

of the Hankel matrix only differ in their first and last element. 

4. Approximate reduced-order modelling. Because of the rep- 

etition of the Markov parameters and hence also their errors, the practical applicability in 

applying algorithm 3.2 straightforwardly might be limited. 
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The limitations are that the actual size of these errors on the Markov parameters have 

to  be “relatively” very small in order to satisfy condition (19). Of course depending on the 

size of the dimensions of the taken Hankel matrix, the assumed upperbound u in (18) might 

still vary. However, here we are facing another intrinsic limitation of the Hankel approach. 

Namely, that when the accuracy of the Markov parameters is “poor,” the dimensions of the 

Hankel matrix should be “large” in order to get “good” error averaging. 

This brief exposure demonstrates that the Hankel approach imbeds a number of 

major drawbacks when addressing realization problems where the given set of Markov pa- 

rameters are contaminated by “significant” errors. 

On the same time, these drawbacks have stimulated additional research in an area 

indicated nowadays as “reduced order modelling”. The problem here is to  approximate the 

given full-rank Hankel matrix by a low-rank matrix, which also has to be Hankel. 

For a number of applications 181, the latter stringent requirement might be relaxed to  

only finding a low-rank approximation, which not necessarily possesses the Hankel structure. 

For this approximate reduced-order modelling problem, a realization scheme also based on 

the QR factorization of the given Hankel matrix, is summarized in algorithm 4.1. Here the 

order n of the reduced-order system is assumed to be given. Furthermore, it is demonstrated 

that column pivoting might be incorporated in the QR factorization. 

Algorithm 4.1: 

STEP 1: Compute a QR factorization with column pivoting, indicated by the column per- 

mutation matrix ll, of the given Hankel matrix H1(M, N): 

From this decomposition, the Hankel matrix HI can be approximated by the matrix H,”, 

given as: 

HP = Q i [ h  1 R12]nT = Q1[rc, . - . r c , d  1 rc,,+, . * - r c n r ]  (28) 
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STEP 2: From the decomposition given in (28), the state space triplet (A; ,~ ,* , (C; )~}  is 

then realized by solving the following least squares problems: 

and b," is given as: 

b: = re ,  

Equations (29-30) of algorithm 4.1 clearly demonstrate that the system triplet 

{A,",b:,cF} is realized via the solution of a set of least squares problems. This is com- 

pletely similar to  the realization scheme based on the SVD 111. On the same time, we 

observe from the same set of equations (29-30) that the condensed system structure of the 

realization is no longer preserved. Therefore, in comparison with algorithm 3.2, algorithm 

4.1 is no longer attractive, however it still remains elegant. This elegantness is due to the 

fact that algorithm 4.1 also only needs the upper triangular factor of the QR factorization. 

Furthermore, it is not necessary to incorporate column pivoting in algorithm 4.1. 

The necessitay depends on the following trade-off. On the one hand, it makes the realization 

scheme computationally more complez, but on the other hand it allows the error in approx- 

imating the given Hankel matrix, as may be expressed by IIR221/, to be minimized. If, for 

example, the minimization of this error is crucial, it is recommended to use the column 

pivoting strategy described in [ 141 or [ 151. 

In addition to  the drawback of approximating the given Hankel matrix by a non- 

Hankel matrix (from which the system is realized), algorithm 4.1 also required the specifi- 

cation of the order of the reduced-order system. Since it was assumed that this information 

could not be retrieved from the second fundamental property of the Hankel approach, ad- 

ditional information is required. 

5. Experimental evaluation. In this section, algorithm 3.2 and 4.1 are 

evaluated experimentally. In this analysis, a third-order SISO system was taken as a test 
-.-L:-l- 'FL, C..,,"C,., I ..-- A : - -  R I - \  ..E 4l.:.. ,I....+ :". v c l l l L l c .  111c C I ( L 1 1 J I C l  IUIILCJIUII pJ\#G) U I  IrlllD p l a l l u  13. 
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0 . 0 0 5 4 9 6 ~ ~  + 0.020285~ + 0.004672 
'(') = z3 - 2 . 7 0 0 6 6 ~ ~  + 2.4242582 - 0.72253 

and its impulse response is shown in Fig. 1. 

The experimental study begins with an evaluation of the size of the errors e,, for 

which algorithm 3.2 is still applicable. In judging the applicability we will evaluate the 

difference between the actual impulse response (calculated from (32)) and the one calculated 

from the realized state space triplet. 

5.1. Determining the applicability of algorithm 3.2. In this part of the 

evaluation, we furthermore compare algorithm 3.2 with the realization technique based on 

the SVD [l] and the one by Rissanen [3]. 

In a f i r s t  experiment no additional errors ei on the Markov parameters, calculated 

from (32), are assumed. These Markov parameters were arranged in the Hankel matrix 

H1(200,6) .  From this Hankel matrix a state space triplet {AQR,~QR,c;~} was realized 

via algorithm 3.2 and using the SVD as described in [l] the triplet { A s v o , b s v ~ , c ~ ~ ~ }  

resulted. The impulse response calculated from both realizations coincides with the actual 

given one. This becomes clear 

parameters computed from each 

and 

from a comparison of the relative errors on the Markov 

triplet. These relative errors are given as: 

for the triplet realized by the algorithm 3.2 and the one based on the SVD [l] respectively. 

Figure 2 graphically represents both these quantities and from this figure we clearly observe 

that the Markov parameters calculated from both realizations are of the same accuracy. 

In a second experiment, additional errors e; were considered. For the sequence {ej} ,  

defined in (18), a zero-mean white-noise sequence with standard deviation oei = 3 * is 

taken. This resulted in very small errors on the Markov parameters relative to their orig- 

inal magnitude. The Hankel matrix H I  (200,6) constructed from these perturbed Markov 

parameters is now used to  realize two state space triplets based on the QR factorization 
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and the SVD. The relative errors (33) and (34) for this experimental condition are plotted 

in Fig. 3. From this figure, we observe that both relative errors are small and of the same 

order. However, we now observe from Fig. 3 that the results based on the SVD are more 

accurate. This discrepancy between the algorithm 3.2 and the method based on the SVD 

will increase when the size of the errors e, increases. Whether this discrepancy remains very 

small for the region where algorithm 3.2 remains applicable is investigated more closely in 

the next experiment. Let us first evaluate the performance of the technique developed by J. 

Rissanen [3] for the perturbed Markov parameters of the second experiment. The computed 

impulse response from this realization is plotted in combination with the one given in Fig. 4. 

This clearly reveals the severe limitations of this realization scheme. 

In the third experiment, we investigate the applicability of the order-detection mech- 

anism, summarized by equation (26). For this purpose, three different values of oe, were 

chosen, i.e. lo-’, respectively. The information used in detecting whether 

the system is of order two is graphically represented in Fig. 5a. From this figure we clearly 

observe (the original system being third order) that oe, = lo-’ determines the maximal size 

of the errors, for which (26) still detects the correct order. Of course the range of applica- 

bility of (26) could be somewhat extended for this application by decreasing the number of 

samples, however the size of the errors for which (26) detects the correct order, will remain 

relatively very small. 

and 

For oe, = the calculation of the impulse response based on the calculated 

triplet via algorithm 3.2 remains very small. The relative error (33) is again of the same 

order as those depicted in Fig. 3. This third experiment clarifies that the size of the errors 

e* for which algorithm 3.2 remains applicable have relatively to  be very small. 

In Fig. 5b, the information necessary for determining whether the system is of order 

three is graphically represented. Here, obviously no restrictions imply. 

When the errors e, increase in magnitude, by making oei larer than lo-’, even the 

rank of the Hankel matrix becomes ill-defined via the SVD. This is because no longer a 

“clear gap” is present in the sequence of the singular values of the “perturbed” Hankel 

matrix. inerelore, Lnis coniirrus illat when the size of the eiiois C, is outside the r e g i ~ ~  

of applicability of algorithm 3.2, also the scheme based on the SVD presented in [l] no 

. m. P 11 . 
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longer solves the partial realization problem straightforwardly. In this case, one focusses on 

the reduced-order modelling problem. The performance of algorithm 4.1 for this purpose is 

evaluated in the next section. 

5.2. Approximate reduced-order modelling. In this experiment we con- 

sidered errors ei outside the region of applicability of algorithm 3.2, and took oei = 

The detection of the rank based on finding a gap in the singular values of the constructed 

Hankel matrix H1(lOO,lO) is not possible. Therefore, let us just postulate the order of 

the system. In this way, a system of order 3 and 9 were realized via algorithm 3.2. The 

computed impulse response from these realizations are respectively depicted in Fig. 6 and 

compared with the the given (noisy) impulse response. From Fig. 6 we clearly observe the 

bad performance of the third-order realized system and also the match of the ninth-order 

system is unsatisfactory. Another disadvantage of this last realization is although it is in 

its “condensed” controller Hessenberg form, its huge dimension (compared with the order 

of the actual system) will severely penalize the operation count of subsequent calculations 

based Qn that realization. 

Using the same Hankel matrix Hl(100, lo), we compared in, Fig. 7, the performance 

of algorithm 4.1 when no column pivoting was used with case where the column pivoting 

strategy described in [14] or [15] is used. In this same figure, we furthermore plotted the 

impulse response calculated from a realization obtained from a SVD of the given Hankel ma- 

trix. From this figure, we clearly observe the improvement and therefore also the necessity 

of using column pivoting in algorithm 4.1. 

6. The conclusions. In this paper, the use of the QR factorization is studied 

in solving the partial realization problem via the so-called Hankel approach [2]. 

Two different types of partial realization problems have been considered. 

In the first type, the Markov parameters are indicated to  be “accurately” given, 

meaning that the errors on these parameters do not destroy the correspondence between 

the numerical rank of the Hankel matrix and the order of the system. 

For this type of realization problem, a new realization scheme has been proposed 

based on a straightforward QR factorization of the Hankel matrix. It has been clearly 
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demonstrated that this scheme outperforms the as “originally indicated computational at- 

trative schemes” developed by J .  Rissanen [3], and L.S. De Jong [4]. This is because while 

the new scheme considers all the given Markov parameters and is due to the use of or- 

thogonal tranfomations numerically robust, it has also resulted in a realization which is 

in condensed system structure, i.e. the observer-Hessenberg or controller-Hessenberg form 

191. This allows the direct use of the vast amount of algorithms to solve in an efficient and 

reliable manner different system theoretical problems (see, for example, 191 for an overview). 

, 

In an experimental comparison, it has been demonstrated that for the type of real- 

ization problem under consideration, the new scheme has a numerical reliability which is 

similar to the realization scheme based on the SVD 111. However, the computational com- 

plexity of this realization scheme as well as the retrieval of a condensed system structure 

make this new scheme much more attractive. 

A second type of realization problems considered the errors on the Markov param- 

eters to violate the correspondence between the numerical rank of the Hankel matrix and 

the order of the system. For this type of realization problems, an algorithmic scheme was 

presented which approximated the given Hankel matrix by a low-rank non-Hankel matrix 

also based on the QR factorization. This type of realization problem was referred to in this 

paper as “approximate reduced-order modelling” in order to distinguish from the treated 

“reduced-order modelling problems’’ 151, [6], and 171, where the Hankel structure is imposed 

on the low-rank approximation. It was demonstrated here that column pivoting might 

be incorporated in this scheme. In comparison with the solution presented for the previ- 

ous type of realization problems, this second scheme (with column pivoting) possesses the 

same advantages over the SVD, except that now no condensed system structure is directly 

obtained. 

The main conclusion of this research is that the QR factorization with or without 

column pivoting might replace the SVD as computational tool in solving partial realization 

problems. The challenging question now is whether it might also help conceptually to better 

understand difficult areas, such as approximating the given Hankel matrix by a low-rank 

matrix, which also has the Hankel structure, in the partial realization problem. 
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Fig. 1:  Impulse response of the third-order system with transfer function (32) 

Fig. 2: The relative error on the Markov parameters calculated from a state space triplet 

realized from a QR and SVD decomposition assuming noise-free Markov parameters given. 

Fig. 3: The relative error on the Markov parameters calculated from a state space triplet re- 

alized from a QR and SVD decomposition assuming perturbed Markov parameters 

(a,, = 3 - 10'). 

Fig. 4: Comparison of the impulse response realized via the technique developed by J 

Rissanen with the  given noisy impulse response (a,, = 3.10').  

Fig. 5a: Evaluation of (26) in algorithm 3.2 in detecting whether the underlying system is 

of order two, for different error levels oei .  

Fig. 5b: Evaluation of (26) in algorithm 3.2 in detecting whether the underlying system is 

of order three, for different error levels a,,. 

Fig. 6: The impulse response calculated from a state space model of orders 3 and 9 realized 

by algorithm 3.1. 

Fig. 7: The performance of algorithm 4.1 with and without column pivoting. 
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